Seasonality and the evolutionary divergence of plant parasites

Frédéric Hamelin*, Magda Castel*, and Ludovic Mailleret[#]

* Agrocampus Ouest, INRA & Univ. Rennes 1
 [#] INRA & INRIA, Sophia Antipolis

Niche theory and speciation workshop Lake Balaton, August 2011

Biotrophic plant parasites

- ▶ feed, grow and reproduce on their living host plant
- cause massive damage to staple food crops

Potato late blight caused the "great famine" in Ireland (1845-1852)

ubiquitous coexistence of related plant parasite species¹

Which ecological bases for evolutionary diversification?

Resource heterogeneity can promote evolutionary divergence²

► Can seasonality promote evolutionary divergence as well?

²Gudelj *et al.* (2004)

Biotrophic parasites life cycle. P. infestans example:

C Cornell University

During early spring

 Primary infections: seedlings infection by inoculum from previous seasons

Biotrophic parasites life cycle. P. infestans example:

During the **season**

 Secondary infections: host-to-host infections through inoculum from the current season

C Cornell University

Biotrophic parasites life cycle. P. infestans example:

C Cornell University

Two **complementary** transmission routes:

- between season
- within season

	Eco-evolutionary model ●○○	

Full model

Two time windows:

This is a 3-dimensional nonlinear continuous×discrete model.

Assuming fast primary infections yields a 2-d compact form³

³Mailleret et al., Theor. Ecol. (2011)

	Biology	Eco-evolutionary model		
00	0	000	0000	0

Compact model

- Within season continuous part:
 - $$\begin{split} \dot{S} &= -\sum_{i} \beta_{i} S I_{i}, \\ \dot{I}_{i} &= \beta_{i} S I_{i} \alpha I_{i}. \end{split}$$
 Susceptible/healthy hosts $\dot{I}_{i} &= \beta_{i} S I_{i} - \alpha I_{i}. \\ \end{split}$ Infected/infectious hosts, r or m

Between season discrete part:

 $S(T_{k}^{+}) = S_{0} \exp(-\sum_{i} F_{i}(T_{k}))),$ $I_{i}(T_{k}^{+}) = S_{0} [1 - \exp(-\sum_{i} F_{i}(T_{k}))] \times \frac{F_{i}(T_{k})}{\sum_{i} F_{i}(T_{k})},$ ith $F_{i}(T_{k}) \propto I_{i}(T_{k}) \exp(-\mu_{i}(T - \tau)).$ (1)

		Eco-evolutionary model		
00	0	000	0000	0

Compact model

- Within season continuous part:
 - $$\begin{split} \dot{S} &= -\sum_{i} \beta_{i} S I_{i}, \qquad & \text{Susceptible/healthy hosts} \\ \dot{I}_{i} &= \beta_{i} S I_{i} \alpha I_{i}. \qquad & \text{Infected/infectious hosts, } r \text{ or } m \end{split}$$

Between season discrete part:

$$S(T_{k}^{+}) = S_{0} \exp(-\sum_{i} F_{i}(T_{k}))),$$

$$I_{i}(T_{k}^{+}) = S_{0} [1 - \exp(-\sum_{i} F_{i}(T_{k}))] \times \frac{F_{i}(T_{k})}{\sum_{i} F_{i}(T_{k})},$$
 (1)
with $F_{i}(T_{k}) \propto I_{i}(T_{k}) \exp(-\mu_{i}(T - \tau)).$

Evolutionary trade-off

Biological evidence⁴ of a negative relationship between

Gosme et al. (2009), take-all of wheat

• To capture this, let $\mu_i = f(\beta_i)$, with f' > 0.

⁴Abang et al. (2006), Carson (1998).

Adaptive Dynamics

A framework to address phenotypic evolution

- consider a resident population at ecological "equilibrium,"
- challenge it with a small mutant sub-population

Assuming the resident is at a *T*-periodic equilibrium $(S_r^{\circ}(\cdot), I_r^{\circ}(\cdot))$,

let

Adaptive Dynamics

A framework to address phenotypic evolution

- consider a resident population at ecological "equilibrium,"
- challenge it with a small mutant sub-population

Assuming the resident is at a *T*-periodic equilibrium $(S_r^{\circ}(\cdot), I_r^{\circ}(\cdot))$,

			Evolutionary invasion analysis	
00	0	000	000	0

Invasion fitness

The mutant invasion criterion reads:

$$s(\beta_r,\beta_m) = (\beta_m - \beta_r)\bar{S}^{\circ}(\beta_r)\tau - [f(\beta_m) - f(\beta_r)](T - \tau)$$

► *i.e.* the mutant can invade provided $s(\beta_r, \beta_m) > 0.$

time

We are interested in **singular traits** β^{\star} s.t.

$$\mathrm{D}_2 s(\beta^\star, \beta^\star) = 0.$$

One necessary condition for a branching point to occur reads

$$D_{22}s(\beta^{\star},\beta^{\star})=-f''(\beta^{\star})(T-\tau)>0.$$

Pairwise Invasibility Plots and evolutionary dynamics

concave trade-off

Ecological dynamics at the dimorphic evolutionary endpoint

Evolution can promote temporal niche differentiation

Biological evidence in several cryptic species complexes

Can reproductive isolation arise from time partitioning?

Thank you for your attention

References:

- Mailleret L, Castel M, Montarry J, Hamelin FM. From elaborate to compact seasonal plant epidemic models and back: is competitive exclusion in the details? *Theoretical Ecology*, In Press.
- Hamelin FM, Castel M, Poggi S, Andrivon D, Mailleret L. Seasonality and the evolutionary divergence of plant parasites. *Ecology*, in press.