Connecting people: WebRTC and the

Pexip collaboration platform
TF-WebRTC : May 19, 2015

DeHIp



Who are Pexip?

= Founded in April 2012
" Strong video heritage

" Manufacture Infinity - a pure-software, virtualized,
distributed, scalable collaboration platform

DeHIp



Who am |?

* John-Mark Bell

Software engineer in Pexip's UK R&D team
Been with Pexip since day one

Responsible for Pexip's OS & product security
Implemented Pexip's initial WebRTC stack

DeHIp



Collaboration technologies

DReHLp



Some important trends

= Hardware -> Software
= Personalisation & BYoD
= User driven demand

It's no longer about the technology

DeHIp



Where does WebRTC fit?

= Browser-based clients are (becoming!) universal

= Can be used in isolation, or to augment traditional
voice/video solutions

- Screen/presentation sharing
- Control functionality

= May enhance existing web collaboration tools

Opens up novel solutions and use-cases

DeHIp



Pexip's philosophy

= Interoperability matters
- People want to use whatever client/device they have

- Collaboration with people using different technologies
needs to work (within and between organisations)

= Scale is inevitable
- Ease of access to capable clients drives demand

- Generational change - people expect to use this stuff

DeHIp



Pexip's philosophy

= Extensibility is vital

We provide a solid, feature-rich foundation
But we don't do everything or solve every use case

Therefore, we expose open, documented APIs which
allow an ecosystem to build around us

This also allows customers to be proactive in
addressing their specific needs by building on our

foundations
DeHIp



Interoperability

e :
Skype RTV b_b Desktops
Skype for ] s ESCP G.7 g
- XX
Business H.323 7 Sea Sl e O ”-’li Rooms
Lync2013 | & WebRTC H.263  Sijren
Lync2011 | sIPvpg sgg'éx li@‘/o'P Phones
Lync2010 ) o SR  H V64HPAAC “#qdd## Softphones

PReHIp



Pexip Distributed Architecture

= Typical Deployment Conferencing
= 1 x Management Node Nodes
= Multiple Conferencing Nodes Management---
= Resilience
* Resilient to temporary network splits
* Leverages VMware and Hyper-V
resilience mechanisms
= Benefits
* Management: Single point of
management & diagnostics for a global
deployment
= Keeps bandwidth usage local
* Minimizes bandwidth usage between
regions

Conferencing
F Nodes

N
~
.
~
~.
~
~<
~
S

-
SSS=s~

-
S===
T
S=a=.

Infinity Deployme

DReHLp



Distributed Architecture - Conferencing

Traditional Centralized Deployment

’ .“; .I; 1_\=\k k
sse Multiple HD streams

One centralized data center .

A High definition video stream

4000 Low resolution video stream Multiple low bandwidth PIP streams
Resilient to network outages

peﬁip



Distributed Architecture - Gateway

Centralized Deployment

Headquarters Remote Office
-Eiew York Singapore
Lync —
- Lync
H.323 Ropm System 2ot Svst
eskgop System
-~
""t Centralized deployment due to >
high custom hardware cost 4 , .
Excessive WAN bandwidth used Distributed Deployment

due to hairpinning of media
Long latency for some local calls

- Headquarters Remote Office

Reduced user experience , iew York Singapore
Ly ---“ ﬂd>
Lync r 7 3 » - =
J No media hairpinning Lync
H.323 Rpom System No WAN bandwidth for local \) Deskton Svet

esktop System
a2 i cilE 5y
Lowest possible latency

Better user experience ¥Tersene

t‘/ ONuy




Endpoint registration and call routing

Registrar and

Conferencing

Management
Node

Registrar and 5.
Conferencing

) X
2% . P Registrar and :
giiat 1 Conferencing -
i N
S Nodes
LI g . .

SIP registration
3

]
]
't

s, K

¢
ALTTITTILM

Advanced call control SIP regis
through distributed policy
server and distributed

registrar on “

PReHIp



Pexip Infinity APIs in a Nutshell

Client Voice/Video
Applications

Infinity

Policy API

Policy Servers



Management Applications

Management REST API can be used for
Automatic deployment
Automatic provisioning
Custom web interfaces

Custom conference control
...and more

jtion
Command
API API

Add/delete/edit
VMR
Deploy new Conf
Node

Status API

Get active

Dial participant conferences
Mute Get Conf Node

participant status

Client Applications

App (Android) App (Browser)

P ip App Framework (Browser)
Pexip App Framework (Android)
Pexip App Framework (iOS)

EventSource
AP API

Conference info Escalate to

video
(push) Start

presentation

Status API

Get conference
info

Get participant
info

Pexip Infinity

Policy Server

Third party policy server



Client API

/21 Pexip Infinity Conner @ x \__\
€ 9 ¢ A hips//pexipdemo.com

Marius@vp.pexip.com

Stian@vp.pexip.com

Gustav@vp.pexip.com

Stine@vp.pexip.com

Line@vp.pexip.com

jmb

Chat room v oA

-




Client API overview

= REST, with JSON payloads

= We use it to build our:
- web application

- mobile applications for iOS/Android
- installable client for Windows/Mac/Linux

DeHIp



Client API flow

= Connect to conference

(Regularly) refresh connection to conference
(Optionally) register for event notifications
(Optionally) activate media functionality
Disconnect from conference

DeHIp



Connect to conference

https://cn/api/client/v2/conferences/conference/request_token {'display name': 'Test'}

HTTP POST to !

|
|
| response
|€e=oososcsscosonsescssoososcascosonsess |
. . | {'status': 'success', |
import json | ‘result': { [
import requests | 'token' L, |
import time | 'expires"' : '120°, |
| 'participant uuid': '..."',
base url = 'https://10.0.0.1/api/client/v2/conferences/test/’ | ‘version' Pt |
- | 'role’ : 'HOST', |
response = requests.post(base url + 'request token', I -22351‘223?&2- Fggﬁ%erence. I
headers = { 'Content-Type' : 'application/json' }, I ‘stun' yp S oo ! I
data = json.dumps({ 'display name' : 'Test' })).json() |} o I
[ ¥ |
| |

token = response['result']['token']
expires = time.time() + int(response['result']['expires']) / 2
participant = response['result']['participant uuid']

pe Hl |



Refresh connection to conference

______________________________________ >
https://cn/api/client/v2/conferences/conference/refresh_token !

HTTP POST to !

I
|
| response

|<tt """"""""" |
respﬁnsg = req:{:ests.post(base_url + 'refresh token', : {.iezuﬁ.; {success ' :
€aders = | 'token' 3 %500Y, |
'Content-Type' : 'application/json', | 'expires' : '120°, |
'token' : token | 'participant uuid': ‘..., |
}).json() | ‘version' 3 "aao’y |
| 'role’ : 'HOST', |
token = response['result']['token'] | chat enabled” Fr“e% .
expires = time.time() + int(response['result']['expires']) / 2 I .zisx}ceftype . UL I
[ 3 |
|} |
I I

[ ]
P o )

PeRLp



Register for event notifications

\

https://cn/api/client/v2/conferences/conference/events

HTTP GET to !

Event stream:

response = requests.get(base url + 'events', http://www.w3.0rg/TR/eventsource/

headers = { 'token' . token },
stream = True)

for event in parse_events(response): : .
process event(event) id: MTAuUNDQuUOTkuMjE=

data: {"guests muted": false, “locked": false}

if time.time() > expires:

refresh token() event: participant sync begin

id: MTAuUNDQuOTKuMjI=

[
[
[
[
[
event: conference update
[
[
[
[
[
data: null |

PeRLp

[ ]
Y o


http://www.w3.org/TR/eventsource/

Parse the event stream

C S
def parse events(response): | events |
state = 'BEFORE_EVENT' [=ommmmm o >|
for line in response.iter lines(chunk size=1):
if state == 'BEFORE_EVENT' and line.startswith('event:'): responseI
state = 'IN _EVENT' B

event name = line[6:].strip() Event stream:

elif state == 'BEFORE_EVENT' and line.startswith(': ping'): http://www.w3.0rg/TR/eventsource/
yield ('PING', None) e.g.:
elif state == 'IN EVENT' and line.startswith('data:'): : hello

event: conference update

I

|

I

|

|

event data = json.loads(line[5:]) id: MTAUNDQUOTKUM]E= i
|
I
|
I
I
|

yplElle) (S MEms, SYERt CRie) data: {"guests muted": false, “locked": false}
def process event(event):

event: participant sync begin
name, data = event

|
I
|
I
I
|
I
|
state = 'BEFORE_EVENT' I
I
|
I
| id: MTAUNDQuUOTkuMjI=
| data: null

if name != 'PING':

# Do something with the event


http://www.w3.org/TR/eventsource/

Types of event

= Participant create/update/delete
- May be used to display roster list in client
= Presentation start/stop/new slide
= Conference status updated (e.qg. lock, guest mute)
= Chat message received
= Disconnected by server

DeHIp



Activate media functionality

C S
H I I P PO ST to | participants/<uuid>/calls |
______________________________________ >
https://cn/api/client/v2/conferences/conference/participants/participant/calls I {'call type': 'WEBRTC', I
| ['present' : 'send|receive'] |
| ‘'sdp' - |
k |
base url p = base url + 'participants/' + participant + '/' | response|
6o mm oo |
response = requests.post(base url p + 'calls’, | {'status': 'success', |
headers = { | ‘result': { |
'Content-Type' : 'application/json', | (CALL BETs s |
'token' : token I ) sdp P I
}
data = json.dumps({ I ¥ I
‘call_type' : 'WEBRTC',
'sdp' : local sdp
})).json()

call = response['result']['call uuid']
remote sdp = response['result']['sdp']

PexLp



Start media flowing (after ICE completes)

https://cn/api/client/v2/conferences/conference/participants/participant/calls/call/ack

C S
H I I P POST to | participants/<uuid>/calls/<call>/ack |

I

I

I

I

I

base url ¢ = base url p + 'calls/' + call + '/'

requests.post(base url c + 'ack',
headers = {
'Content-Type' : 'application/json',
'token' : token

})

e @

ADDUIN



Disconnect from conference

= HTTP POST to | retease token

https://cn/api/client/v2/conferences/conference/release_token

\

requests.post(base url + 'release token',
headers = {
'Content-Type' : 'application/json',
‘token' : token

b



Other client API functionality

Conference control
- (Un)lock conference (and grant access to individual
participants if they join when the conference is locked)

- (Un)mute all guests
- Disconnect some/all participants
- Lock spotlight on a participant, so they are always visible

Media de-escalation and DTMF entry
Outbound dialling from conference
Send chat messages to conference

DeHIp



Client API forthcoming features

* Presentation sending
- Allows a client to present a JPEG or PNG image into the
conference

- APl is currently beta (web application in Infinity 9 uses it
today)

= Client registration, and incoming calls
- Client may log in to the service and be notified of incoming
calls

- Allows dial-out to WebRTC clients (from conferences, and
through gateway rules)



Client APl SDKs

= Javascript
- Provides a Javascript-friendly abstraction over the client REST API

- We use it ourselves to build the Infinity web client

- Designed to be used by third-parties to produce custom Uls and
workflows

= |1OS
- Available later in 2015

- The basis of Infinity Connect for iOS

- Voice and video capable, in addition to exposing the Infinity client
APl in a more appropriate way for i0OS application developers



Javascript SDK usage

<IDOCTYPE html>
<html>
<head>
<script type="text/javascript” src="https://cn/static/webrtc/js/pexrtc.js">
<script type="text.javascript”>
window.onload = function() {
var rtc = new PexRTC();

rtc.onSetup = function(url, pin status) {
rtc.connect(null);
};

rtc.onConnect = function(url) {
if (url !== null) {
document.getElementById('remote-video').src = url;

}
+
rtc.makeCall('cn', 'test', 'Test', null);
T
</script>
</head>
<body>
<video width="100%" id="remote-video” autoplay="autoplay”>
</body>
</html>

pe Hl |



Policy APl overview

New in Infinity version 9

Simple HTTP(S) GET request/response

= May be authenticated

Permits external control over (in Infinity v9):
- Service (VMR/Gateway/IVR) to use

- Media location

- Audio avatar
- Participant avatar (i.e. for display in client roster list)

DeHIp



Simple policy example

Goal: allow internal users to connect directly to a
conference, but require external users to provide a

ollg

E S
| INVITE a@b.com |
I
|

P
|
|
|
|
|
|

I
|
I
| | response
I
I
|

[ ]
NOUIN
PeRLp



Service configuration requests

= GET /policy/vl/service/configuration

= Parameters in URL query string:
?protocol=sip&node ip=1.2.3.4&remote address=4.5.6.7&

local alias=sip:a@b.com&call direction=dial in&encryption=0n&
remote alias=sip:alice@example.com&remote display name=Aliceé&

location=London

DeHIp



Service configuration responses

= Depends on desired behaviour:
- Send 404 Not Found to fall back to default
Infinity behaviour

- Send 200 OK with Content-Type:
application/json to authoritatively define
service configuration:

 Failure: { 'status' : 'failed', 'reason' : 'Descriptive reason' }

e Success: { 'status' : 'success', 'result' : { ... } }

DeHIp



Minimal policy response generator

= Assumes web server framework exists already!

def create response(request):
config = None

if 'sip:a@b.com' in request.args.get('local alias', []):
config = {

'service type' : 'conference',
"name’ : 'test',
|pin| . (I}

if not requests.args.get('remote alias', [''])[0].endswith('@b.com'):
config['pin'] = '1234'

return config

[

|

D |
4

-

o |

-

e @



Minimal policy response generator

= What if we want to separate guests and hosts as
well?

def create response(request):
config = None

if 'sip:a@b.com' in request.args.get('local alias', []):

config = {
'service type' : 'conference',
"name’ : 'test',
'pin' 1 '1234°,
'allow guests' : True

}

if not requests.args.get('remote alias', [''])[0].endswith('@b.com'):
config['gquest pin'] = '9999"

return config

=

pet

o |

-

e @



Other policy applications

Integrate with Active Directory
- Dynamically manufacture VMRs based on directory contents and dialed local
alias

- Restrict VMR access to users in specific AD groups

- Dynamically apply bandwidth restrictions to calls based on importance of
participants

= Set conference themes on the fly
- e.g. on a per-location basis

Force media to a specific location
- e.qg. to conserve resources

Custom billing engines
- e.qg. for fine-grained control over multi-tenant environments

DeHIp



DeHLP



